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Delay effects and differential delay equations 
in chemical kinetics 

by IRVING R. EPSTEIN 
Department of Chemistry and Center for Complex Systems, 

Brandeis University, Waltham, MA 02254-91 10, USA 

The effects of time lags on the kinetic behaviour of chemical systems are 
considered. Such lags can result from spatial separation of components of a system, 
from the introduction of a delayed feedback, or as a way of representing the effects of 
intermediate steps in a series of reactions. The mathematical apparatus for treating 
systems with delay is introduced. Then, a number of examples, both experimental 
and theoretical, are discussed. It is seen that time lags can produce major, qualitative 
changes in the behaviour of a system, and that it is sometimes possible to reduce 
significantly the number of variables needed to describe a system if one utilizes 
differential delay rather than ordinary differential equations. 

1. Introduction 
The vast majority of studies in chemical kinetics employ sets of coupled, first-order, 

ordinary differential equations to describe the changes in time of the concentrations of 
species in the system. These rate equations, commonly derived from the Law of Mass 
Action, are idealized in a number of ways. They often assume isothermal conditions, 
yielding polynomial rate laws instead of the transcendental expressions that would 
result if the temperature were explicitly included as a variable. They constitute an 
average over microstates, allowing us to employ a relatively small number of bulk 
concentrations as our dependent variables. They ignore fluctuations, so that we may 
utilize deterministic equations rather than a stochastic or a master-equation formul- 
ation. They usually contain the implicit assumption that the medium is well-mixed with 
all species uniformly distributed; any spatial gradients would require the inclusion of 
diffusion terms and the use of partial differential equations. All of these assumptions or 
approximations are well known, and in all cases chemists have more elaborate 
techniques at their disposal for treating these effects more exactly should that be 
desirable. 

Another, less widely appreciated idealization in chemical kinetics is that pheno- 
mena take place instantaneously, that a change in [A]  at time t generates a change in 
[ B ]  at time t and not at some later time t + z. If one takes a microscopic view, it is clear 
that this state of affairs cannot hold. At the very least, a molecular event taking place at  
point x and time t can affect a molecule at point x’ only after a time of the order of 
(x - x’)’/2D, where D is an appropriate diffusion constant. The consequences of this 
observation at the macroscopic level are not obvious, but as we shall see in the 
examples below it may sometimes be useful, particularly if the mechanism is not known 
in detail, to introduce delays explicitly in modelling complex reaction networks. 

Since relatively few studies have been undertaken of the effects of including delay in 
describing chemical kinetics, this article is not a review in the usual sense of 
summarizing and evaluating a large body of relevant literature in a mature field. The 
intent here is in part pedagogical, in part proselytizing. I hope to demonstrate to 
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136 I .  R .  Epstein 

chemists that one may gain useful insights into some systems by using a formalism that 
includes delay effects, that it is worth thinking about these effects in mechanistic terms, 
and that there exists an accessible mathematical apparatus for dealing with such 
models. Mathematical biologists have been using delay models extensively for some 
time (Sharpe and Lotka 1923, May 1973). With the recent surge of interest in nonlinear 
chemical dynamics (e.g., Field and Burger (1985), Gray and Scott (1990)), the time is ripe 
for chemists to exploit these techniques as well. 

The equations that one uses in treating systems with delay are functional differential 
equations, equations in which the time derivatives of a function depend not simply on 
the independent variable t, but on some function of t, e.g. 

-- dx(t) - - kxCf(t)]. 
dt 

More specifically, we shall be dealing with differential delay or differential difference 
equations, where the concentrations x(t) may change at  rates that depend not only on 
the present values of the concentrations, but also on their values at earlier times. In 
other words, the function f(t) in an equation like (1.1) will take the form f(t)=t -7, 
where ‘t is the delay. In the next section, I give a brief survey of the relevant mathematics. 
The most important material is contained in section 3. There, I summarize a variety of 
examples that should give the reader a sense of what has been done and of the potential 
and the power of this point of view. A final section is devoted to possible future 
directions. 

2. Mathematical background 
There are several books on the subject of differential delay equations. The recent 

work by MacDonald (1989) is probably the most accessible for the reader without 
extensive mathematical background. The earlier work by Bellman and Cooke (1963), 
while more mathematically oriented, contains a number of useful results. Hale’s (1979) 
review article and several sections of Murray’s (1989) excellent treatise on mathemat- 
ical biology also contain readable treatments of differential delay equations. 

2.1. Differential delay equations 
A differential delay equation (DDE) is one in which the time rate of change of a 

species depends upon the state of the system at some previous time or times. In the 
simplest case, we have 

where z is the time lag or delay. It is, of course, possible to have equations with multiple 
delays ‘tl, z2,. . . , or even a continuous distribution of delays (MacDonald 1989). Also, 
one will generally be dealing with coupled systems of equations rather than with a 
single equation like equation (2.1). 

To illustrate the profound effects that introducing delay can have on the nature of 
the solutions to chemical rate equations, we consider the prototype first-order decay 

dx 
dt 
- = - kx(t). 
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Delay eflects in chemical kinetics 137 

We modify equation (2.2) by introducing a delay z: 

dx 
dt 
-= - k x ( t - z ) .  

By rescaling equation (2.3) in terms of the ‘reduced time’ t lz ,  one can show that the 
properties of the solutions depend only upon the product kz  and not on the rate 
constant and time lag individually. We obtain the solutions to equation (2.3) explicitly 
in the next section. For kz sufficiently small, x( t )  decays monotonically, though not 
exactly exponentially, in a manner similar to the non-delayed system. As kz is increased, 
we observe first damped and then growing oscillations, with a single value, q = kz = 4 2 ,  
for which periodic oscillations occur. 

In the table and figure 1, we summarize the behaviour of x( t )  as a function of the 
parameter kz. Note that the periodic behaviour is structurally unstable: the smallest 
change in the parameter q leads to a qualitative change in the behaviour. By adding a 
small nonlinear term, e.g., of the form  EX(^)^, to the right-hand side of equation (2.3), 
one obtains a system that gives structurally stable limit cycle oscillations, illustrated in 
figure 2, over a range of parameters q (Epstein 1990). Solutions to linear sets of coupled 
differential delay equations can be built up from the fundamental solutions (analogous 
to exponentials) to equation (2.3). 

2.2. Solution methods 
The analytical treatment of coupled, or even individual, nonlinear DDEs is an even 

more formidable task than that of solving ordinary differential equations. Nevertheless, 
it is useful to examine some of the methods available for solving DDEs. The prototype 
equation (2.3) 

dx 
-= dt -qx( t -1) ,  (2.4) 

in the generic transformed form (2.4) serves as a useful example for illustrating some of 
these techniques. 

2.2.1. Direct, interval b y  interval integration 
The most straightforward approach to solving an equation like (2.4) is to attempt to 

integrate it over an interval equal to the delay time and then to use that solution to 
integrate equation (2.4) in the next interval, etc. The mere description of this procedure 
points out a fundamental difference between ordinary and delay differential equations. 
To solve an ordinary differential equation, one must have the value of the solution (or 
its derivatives) at n points, where n is the order of the equation. For the first-order 
equations typically encountered in chemical kinetics, this requirement means that we 

Qualitative behaviour of solutions to equation (2.3). 

Range of parameter q = k ~  Behaviour of solution x( t )  

Monotonic decay to x = 0 
Damped oscillatory decay to x = O  
Periodic oscillation, period = 42 
Undamped, growing oscillation 
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Figure 1. Behaviour of the solution x( t )  to equation (2.4) for several values of the parameter q. 

(a) q=O.3, (b) q =  1.3, (c) q=1.5708 ( 4 2 ) ,  ( d )  q =  1.7. 

need to specify all of the concentrations at some initial time, say t = 0. Solution of a 
differential delay equation requires the specification of the solution (all concentrations) 
on an interval oflength z, where z is the delay time. In effect the delay system, even if there 
is only a single dependent variable, has an infinite number of degrees of freedom, 
because the solution must be specified at an infinite number of points on the initial 
interval. For this reason, the variety of dynamical behaviour that can be exhibited by a 
differential delay equation is far wider than that accessible to the corresponding 
equation in the absence of delay. For example, even a single nonlinear delay equation 
can give rise to chaotic solutions, while at least three coupled ordinary differential 
equations are required for chaos. 

Returning to our example (2.4), let us consider the initial condition 

x(t)= 1, - 

In the interval [O, l), equation (2.4) becomes 

- dx 
---q, O d t < l .  dt 
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Figure 2. Limit cycle oscillations obtained by adding a small nonlinear term - ~ x ( t ) ~  to the 
right-hand side of equation (2.4) with q = 1.7. Note how with the different starting values 
x(0) = 1 (a), 5 (b), and 0.2 (c), the system approaches the limit cycle oscillation with period 
3.76 and amplitude 1.87. 
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140 I. R.  Epstein 

This is easily integrated to yield 

x(t)= -@+constant, O < t <  1. (2.7) 
By requiring that the solution be continuous at the boundary between intervals, x = 0, 
we find that the value of the constant in equation (2.7) must be 1. 

Proceeding further, we have 

x(t) = 1 - qt, O d t t l ,  (2.8) 

1 <t<2,  (2.9) 

$(t - 1)2 
l d t < 2 ,  (2.10) 

q 2 ( t  - 1)2 
2 ’  

+ constant = 1 - qt + 
2 

x(t) = - qt + 
where again the constant in equation (2.10) has been determined by requiring that the 
solutions (2.8) and (2.10) be continuous at the boundary t =  1.  If we continue in this 
fashion, we soon observe that the general solution in any interval may be written in the 
form 

or, equivalently 

(2.1 1) 

(2.12) 

2.2.2. Laplace transform solution 
While the above procedure is a powerful one when it works, there are relatively few 

systems to which it can be successfully applied. A more generally applicable technique, 
useful in solving coupled sets as well as individual DDEs, is the Laplace transform. For 
ordinary differential rate equations, taking the Laplace transform affords sets of 
polynomial algebraic equations. For DDEs, we obtain transcendental equations. 

Let us define, for any function f(t), its Laplace transform f(s): 

f ( s )= Saf(t)exp(-st)dt. 0 

Transforming equation (2.4) with the initial condition x(0) = 1 yields 

l7 [ S S 

1 exp(-s) 
si(s)-l= -q i(s)exp(-s)+--- 

(2.13) 

(2.14) 

where the last two terms on the right-hand side result from the fact that x(t)= 1 for 
- 1 dt<O. We can solve for 3 to obtain 

(2.1 5) 
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Delay effects in chemical kinetics 141 

Formal expansion of the denominator on the right-hand side of equation (2.15) as a 
power series in q exp ( - s)/s yields 

1 "  
S m = O  

Z(s) =-+ C (- q)m+l  exp (- ms) sm+ '. (2.16) 

The transform (2.16) is easily inverted term by term to give an expression identical to 
equation (2.12), which was obtained by direct integration. 

2.2.3. Numerical methods 
Except in special limits, for example in the neighbourhood of equilibrium, most 

interesting sets of chemical rate equations are analytically intractable; they require 
numerical integration in order to yield explicit solutions. Sets of chemically significant 
differential delay equations are a fortiori even less likely to afford analytic solutions. 
While a great deal of progress has been made in recent years in developing numerical 
methods for treating even very large, stiff sets of ordinary differential equations (ODEs) 
(Gear 1971, Byrne and Hindmarsh 1987), I am not aware of comparable software 
readily available for integrating DDEs. 

We have had some success with two numerical approaches (Epstein and Luo 1991), 
one an adaptation of a widely employed package for numerical integration of stiff 
ODEs, the other specifically developed to treat DDEs. The first method involves an 
adaptation of the Hindmarsh (1973) implementation of the GEAR program, which 
employs a backward difference formula with adaptive step size. As additional input for 
DDEs, we require the length(s) of the time delay@) and the value@) of the delayed 
variable(s) over the initial interval(s). The standard ODE program saves time by 
stepping the integration through the longest time sl ep compatible with the error 
specification. In the DDE version, we force the program to compute and store the 
variables each ez, where E is a number of the order of lo-' or and z is the time 
delay. The delayed variables are stored in an array, and at each integration step, a test is 
made to select the appropriate values of the delayed variables to use in computing the 
derivatives. The array of stored variables is updated at each step. If desired, one can 
make the procedure more accurate by interpolating the delayed variables from the 
previously computed stored variables (or one can decrease 8). 

A rather different approach utilizes a fourth-order Taylor series approximation to 
the DDEs. Each interval z is divided into a large number N of steps, and the non- 
delayed variables are stored in arrays of length N ,  while the delayed variables require 
arrays of length 2N, the first N of these holding the values for the previous interval. The 
integration proceeds N steps at a time, moving the solution along by z units of time. A 
subroutine must be written that contains explicit expressions for the first through 
fourth derivatives of each of the variables, obtained by differentiating the original 
DDEs. Each variable is then calculated by summing the terms in the Taylor series 
approximation through fourth order. Increasing the number of steps per interval N 
appears to afford greater improvement in dealing with stiff DDE systems than 
increasing the order of the Taylor series approximation. 

While both of these methods work adequately with systems that are not very stiff in 
the absence of delay, long delay times z engender serious numerical difficulties in 
systems like the Oregonator (Field and Noyes 1974) that display a significant degree of 
stiffness when z=O. As interest grows in DDE models, it is likely that more reliable 
numerical packages will become accessible to kineticists. 
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142 I .  R .  Epstein 

2.3. Linear stabili ty analysis 
A great deal can be learned about the dynamical behaviour of a system of ordinary 

differential equations by analysing the stability of the steady state(s) of the system. The 
same is true of systems of DDEs, and the analysis is similar, but more difficult. If the 
equations are written in the form of equation (2. l), where f and x are now considered to 
be vectors of length m, then a steady state of the system is one in which x( t )  = x( t  - z) and 
all the time derivatives vanish: 

f ( X , ,  x s )  = 0. (2.17) 

We are interested in the stability of the steady state x ,  to small perturbations. As in the 
case of ordinary differential equations, we write 

x( t )  = x s  + a exp (cot), (2.18) 

and substitute equation (2.18) into equation (2.1). We assume that the perturbation 
amplitude a is small and linearize by dropping terms of second and higher order in a. 
This procedure results in an equation that resembles the familiar secular equation for 
the eigenvalues o obtained in linear stability analysis of a set of ODES. There are, 
however, some crucial differences. 

Linearization of equation (2.18) affords a secular equation of the form 

det [J(x, ,  x,)  + Jr(xs,  x s )  exp ( - oz) - 011 = 0, (2.19) 

where I is the identity matrix and we need to define two Jacobian matrices, one with 
respect to the instantaneous, and one with respect to the delayed concentrations: 

(2.20 a) 

(2.20 b) 

As equation (2.19) shows, whenever a derivative is taken with respect to a delayed 
variable, the resulting term in the Jacobian J ,  must be multiplied by a factor exp (- 07). 

For systems without delay that obey Mass Action kinetics, the secular equation yields a 
polynomial equation of order m that can be solved for the roots With 
delay, the secular equation is transcendental, and the number of roots oj is in general 
infinite. 

Despite the infinite number of roots of equation (2.19), it is often possible to 
determine analytically whether or not a given steady state x ,  is stable. The problem is 
equivalent to deciding whether all the roots of an equation of the form 

g(o)  + h(w) exp (- 07) = 0, (2.21) 

where g and h are polynomials of degree < rn, lie in the left half of the complex plane. 
Bellman and Cooke (1963) and MacDonald (1989) each present several general 
theorems that enable one to test algebraically the stability of a particular steady state. 
The results for systems of more than two variables are extremely limited, while those for 
two variables apply only to certain systems, depending upon the signs of the terms in 
the secular equation. 
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Delay effects in chemical kinetics 143 

When there is only a single concentration variable, a powerful theorem due to 

All roots of the equation 
Hayes (1950) is generally applicable. The theorem is as follows: 

p exp (2) + q - z exp ( z )  = 0, (2.22) 

where p and q are real, have negative real part if and only if 

P < h  (2.23 a) 

and 

p < - q < (a; + p y ,  

where a,  is the root of 

(2.23 b) 

a = p tan (a), (2.24) 

such that 0 < a  < 7c. If p = 0, we take a, = 4 2 .  
Equations (2.23) provide three conditions on the steady-state concentration and the 

parameters that must be fulfilled in order for the steady-state to be stable. Application 
of equations (2.19) and (2.23) to our prototype DDE (2.3) yields a secular equation 

- k exp (-COT) --w = 0, (2.25) 

which, after defining z = cur, and multiplying by z exp (or) takes the form of equation 
(2.22) with p = 0, q = - kz.  At the unique steady state x, = 0, conditions (2.23 a) and the 
first of (2.23 b) are always satisfied, while the second condition (2.23 b) implies that, as 
observed earlier, the steady state is stable if kz <a,  = 4 2 .  For kz > 4 2 ,  we have growing 
oscillations. 

MacDonald (1989) proposes a more generally applicable geometric approach to 
deciding the stability question posed by equation (2.21). He first observes that a change 
in stability can occur only when a root of equation (2.21) crosses the imaginary axis, i.e., 
when u = i P  with f i  real is a solution of equation (2.21). If we make the substitution 
cu = iP, we can rearrange equation (2.21) to take the form 

(2.26) 

If we know, for example, that the steady state in question is stable in the absence of 
delay, i.e., for z = 0, then an instability can occur only if there are some real P and 
positive z for which equation (2.26) holds. Whether or not this is possible is most easily 
assessed by a simple geometric construction. As f i  is increased? from 0 to 27c, the right- 
hand side of equation (2.26) simply traces out the unit circle in the complex plane. The 
left-hand side, -g(iP)/h(ifl), which MacDonald calls the ratio curue R(P), will be some 
other curve in the complex plane. If a bifurcation occurs in which the stability changes, 
the ratio curve must intersect the unit circle. For our example equation (2.3), the ratio 
curve is given by R(P) = - iP/k. As shown in figure 3 (a), this curve starts at the origin 
and then, as P is increased from 0, moves along the negative imaginary axis, intersecting 
the unit circle at -i. Setting exp(-ipz)= -i here yields Bz=7c/2, while setting 
R ( j )  = - i implies that /3 = k .  Combining these two results we recover the condition for 

f MacDonald (1989) discusses, the significance of intersections of the ratio curve with higher 
order (/? > 271) circuits of the unit circle. 
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144 I. R .  Epstein 

f 

(6) 
Figure 3. Geometric construction (MacDonald 1989) for assessing stability of steady states of a 

DDE. In (a) g(w) is linear and h(w) is constant. Curve 1 shows case of equation (2.3) where 
stability changes as ratio curve and unit circle intersect. Curve 2 shows case in which the 
two curves never intersect, so stability is independent of z. In (b), g(w) is quadratic and h(o)  
is linear. Curve 1 undergoes a single change in stability as t is increased. Curve 2 has two 
changes in stability (e.g., stable+unstable+stable), and curve 3 shows no change in 
stability with t. 
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Delay efects in chemical kinetics 145 

the change of stability, kz = n/2. Some additional examples of this construction for 
other equations of the form (2.21) are shown in figure 3. 

MacDonald’s analysis yields a number of other significant results. For some choices 
of the functions g and h, it is possible for the ratio curve to cross the unit circle more 
than once. In such cases, contrary to intuition, the solution may be stable for short 
delays, unstable in an intermediate range of z, and then stable again at longer delays (or 
unstable, then stable, then unstable). There may even be several ‘windows of instability’ 
as z is increased. MacDonald also shows that the period of oscillation immediately after 
the steady state becomes unstable as z is varied must exceed z and is generally > (3/2)z. 
If one can show that IR(P)I > 1 for all /3, then the ratio curve can never cross the unit 
circle, so that the stability can never change, and the stability of the system is 
independent of the delay and can thus be determined for z = 0. 

3. Examples 
The significance and potential of differential delay equations in chemical kinetics 

are best appreciated by considering a number of examples of how delay models have 
been applied to systems of chemical interest. This section consists of a series of such 
examples. While it is not meant to be exhaustive, it should give a broad perspective on 
the sorts of things that one may do with delay models and DDEs. 

3.1. Network thermodynamics 
Katchalsky and collaborators (Oster, Perelson and Katchalsky 1973) have 

developed an approach to the thermodynamic analysis of complex dynamical systems 
in which chemical reactions are represented by the charging and discharging of 
capacitors (products and reactants, respectively) accompanied by the dissipation of free 
energy in a resistor (the reaction). The generalized capacitances are related to the free 
energies of the chemical species. 

Atlan and Weisbuch (1973) point out that in a dissipative process, electrical or 
chemical, there is a non-zero time delay between the flow of matter (electrons or 
molecules) and the concomitant change in potential. Explicit inclusion of this delay 
within the framework of network thermodynamics leads to an additional resistance, 
i.e., a purely dissipative term. If the delay is long enough, then an additional inductive 
term, which may lead to oscillatory behaviour, appears as well. The authors attribute 
the physical origin of these effects to the time required for mixing after a local 
concentration change occurs. The magnitude of the time is related to the relaxation 
time of the reaction. In macromolecules, changes in conformation can increase the 
delay time significantly, leading to enhanced likelihood of inductance-like effects. 
While this approach does not appear to have been pursued in the literature, it may 
provide a useful starting point for connecting the thermodynamic and kinetic 
approaches to systems involving delays. 

3 2. A sequence ofjrst-order reactions 
In a generalization of the notion of a rate-determining step, Epstein (1990) has 

shown that a sequence of coupled irreversible first-order reactions is asymptotically 
equivalent to a smaller set of DDEs involving only the concentrations of the reactant, 
product and ‘bottleneck intermediate’ species. 

He treats the consecutive reactions 
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146 1. R. Epstein 

with initial conditions 
A ,  =A02 (3.2 a) 

Ai=O, i=2,3,. ..,n. (3.2 b) 

The resulting set of rate equations 

dA1(t) = - k, A l(t), dt 
(3.3 a) 

= - kiAi(t)+ k i - ,A i -  l(t), i=2,3,. . . , n- 1, (3.3 b) dA,o 
dt 

(3.3 c) 

can of course be solved analytically to yield a sum of exponential terms for each of the 
concentrations. Epstein (1990) shows that after a transient period this solution 
approaches that of the following, generally smaller set of DDEs: 

(3.4 a) 

(3.4 c) 

The key to the transformation from the ODES (3.3) to the DDEs (3.4) lies in defining a 
subset { Aa(p))p= o, ,, , , , , of bottzeneck intermediates. These species, each of which is 'rate- 
determining' for a portion of the reaction sequence, are defined as follows. Let a(0) = 1, 
and let a(P) be the index of that species i such that ki is the smallest rate constant, i.e. 

(3.5) ka(p) = min (ki), i = 1,2,. . . , n. 

If k ,  is the smallest rate constant, then a(P)= 1, P=O, and there are no bottleneck 
intermediates. The system is well described by two equations, one, equation (3.4 a), for 
the instantaneous disappearance of A , ,  the other, equation (3.4 c), for the delayed 
appearance of A,, where the delay z0 is determined by the mediating effects of all the fast 
reactions according to equation (3.7) below. If k ,  is not the smallest of the rate 
constants, then AalP) is a bottleneck intermediate. It accumulates at some point in 
the reaction, and the rate of its destruction is rate determining during some portion of 
the reaction. 

Now consider the remaining species for which i < a(P). We choose a(P - 1) to be the 
index of that species whose rate constant is the smallest in this group: 

k,,,- ,,=min (kJ, i= 1,2,. . . , a(P)- 1. (3.6) 

Again, if k ,  is the smallest of the remaining rate constants, we are done, P = 1, and there 
is a single bottleneck intermediate. If not, we continue the process until we are left with 
k ,  as the smallest remaining rate constant. The set of bottleneck intermediates is then 
complete. The delay times zP are given by 
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membrane 
Figure 4. Model experiment involving diffusion through a membrane with associated time 

delay, equation (3.9) (Epstein 1990). Surface area of the membrane is A.  

The DDE model (3.4) reproduces the exponential decay of the reactant A, ,  the rise and 
fall, after a delay, of each of the bottleneck intermediates AaCp), and the delayed buildup 
of the product A,, which constitute the essential aspects of the dynamics of the full 
system represented by equations (3.3). While the model considered here is dynamically 
trivial, it does suggest the possible utility of an approach based on treating systems with 
many intermediates in terms of DDE models with just a few key intermediates and 
delays that incorporate the effects of the non-essential intermediates. The difficulty in 
implementing such an approach lies in deriving relationships analogous to equation 
(3.7) between the parameters of the system and the delay times. 

Epstein (1990) also considers a model (Allnatt and Jacobs 1968) for nucleation in 
solid-state reactions that is equivalent to a set of coupled first-order rate equations. He 
shows that by introducing delays to account for the fact that an n-particle nucleus 
cannot grow until an (n- 1)-particle nucleus is formed, the model can be made more 
physically realistic with relatively little increase in computational effort. 

3.3. Diffusion through a membrane 
Epstein (1 990) has introduced a model that dramatically demonstrates the 

profound effects that delays associated with transport may have on the dynamics of a 
system even in the absence of a chemical reaction. Consider the arrangement shown in 
figure 4, in which two compartments containing the same species C are connected by a 
membrane that permits the diffusion of C. Each compartment is assumed to be well 
stirred and homogeneous, so each is characterized by a single concentration variable, 
Ci, i = 1,2. The diffusion constant of C is D; the membrane has cross-sectional area A 
and length L; and the compartments have lengths 1, and 12, respectively. 

Fick’s First Law of Diffusion gives 

dC, D 
-=-(Cj-Ci), i,j=1,2, j# i .  
dt Lli 

Implicit in equation (3.8) is the assumption that the time required for a molecule of C to 
cross the membrane is infinitesimal. In reality, this time is non-zero; in fact, there is a 
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148 I. R. Epstein 

distribution of times z for molecules to cross the membrane. The existence of such time 
lags is well known, and the mean value of z for various diffusion geometries is discussed 
by Crank (1975). Let us for the moment examine a model in which all molecules take the 
same time z to traverse the membrane. If we solve this problem for a general z, we can 
then average the result over an appropriate distribution of time lags. 

As a result of taking z into account, the rate of increase of Cj at  time t as a result of 
diffusion now depends not upon Ci(t) but upon C,(t-z). If we define qi=D/Lli, we 
obtain the DDE version of our instantaneous diffusion model equations (3.8): 

-- dCi(t) -qi[Cj( t -z)-Ci( t ) ] ,  i,j= 42 ,  i#j. 
dt (3.9) 

The appropriate initial conditions are? 

Ci(t) = C exp (- qit), O < t < z, i = 1,2. (3.10) 

Equations (3.9) can be solved analytically (Epstein 1990) in terms of our ‘delayed 
exponentials’, equation (2.1 1). The solutions reveal some remarkable features of the 
model, two of which are illustrated in figure 5. If the compartments have equal volumes, 
if z is large enough, and if the initial concentrations are sufficiently different (figure 5 (a)), 
then the system approaches equilibrium, where C, = C, = C, with damped oscillations. 
Even more surprising (figure 5 (b)), if the volumes of the compartments are sufficiently 
different, we can start with equal concentrations and the system will approach 
equilibrium in a damped oscillatory fashion. 

What is the meaning of the highly counterintuitive and apparently non-physical 
behaviour? The key lies in the fact that the final equilibrium value of C lies significantly 
below the starting concentrations in the two compartments. The oscillations occur 
while the initially empty membrane is filling up. Consider the case of equal initial 
concentrations with cell 1 much longer than cell 2. In the first interval [0, z), the same 
number of molecules leaves each cell, but, because cell 2 is smaller, its concentration 
drops further. At time z, when molecules begin to arrive, the effect is reversed, and the 
concentration in cell 2 rises more rapidly than that in cell 1.  Since molecules are now 
flowing in both directions, the effect will soon damp out. Calculations of the difference 
between the initial and final concentrations show that the amount of material ‘missing’, 
i.e., remaining in the membrane at equilibrium is proportional to L/[3(1, + l,)+ L], 
where we have taken (Crank 1975) z = L2/6D. 

Readers may find the above result more convincing if they try to picture how the 
initially equal densities of people in two rooms of very different sizes connected by 
identical doors through an anteroom will change in time if, when the doors are opened, 
people move from room to room with equal probability and equal velocity without 
collisions. It is also reassuring to observe that when the results are averaged over a 
realistic distribution of z (which results, among other things, from molecular collisions 
within the membrane) the oscillations disappear and the concentrations behave 
monotonically as expected. 

_____ 

?The diffusion is turned on at t=O,  so that in the first interval [O,z) C flows out of each 
compartment at a rate qiCi, but no C can flow in yet, because there has not been enough time for 
molecules to cross the membrane. 
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Figure 5. Oscillatory behaviour in the model of diffusion through a membrane shown in figure 
4. Solid line is C,(t) ,  dashed line is C,(t). (a) Unequal initial concentrations: q1 =qz=3, 
C,(0)=5, Cz(0)=l, z=1; (b) unequal volumes: q1=2, q2=8,  C1(0)=C,(0)=3, z=1. 

3.4. A nonlinear system: delayed feedback in an illuminated thermochemical reaction 
The examples considered thus far all involve linear DDEs. While linear systems 

allow a considerable amount of analysis, they do not possess the rich variety of 
behaviour exhibited by nonlinear systems. As a first example of a nonlinear delay 
system, I shall consider a set of experiments and models studied by Ross and coworkers. 

S20,F2e2S0,F,  (3.1 1) 

is illuminated at 488 nm, only the product S03F absorbs the light, which is turned into 
heat. As a result of the heating, the equilibrium shifts to the right, causing more S 0 3 F  to 

When the gas phase reaction 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
3
5
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



150 I .  R .  Epstein 

be produced, and increasing further the amount of light absorbed. The reaction thus 
possesses a positive feedback. If the incident light intensity is slowly varied, the system 
shows hysteresis between a high-monomer and a low-monomer steady state (Zimmer- 
man and Ross 1984). There is also an unstable steady-state with intermediate monomer 
concentration. 

Zimmerman et al. (1984) modify the above system by adding a delayed feedback 
that causes the instantaneous intensity of the incident light to depend upon the 
concentration of SO,F at an earlier time t - 7 .  The particular relationship they use is 

@o(t)= C, + C,[1- A(t -z)]Qo(t - T ) ,  (3.12) 

where Q0 is the incident light intensity, C, and C, are positive constants set by the 
experimenter, and A is the light absorption of the solution, which can be calculated 
from [SO,F] using Beer’s Law. The authors then analyse the stability of the resulting 
delay system. 

They find first that the steady states of the modified system are the same as those of 
the system in the absence of the feeback. What is changed by the delay is the stability of 
these states. For short delays, the calculations show that the middle steady state, which 
is unstable, and hence experimentally unobservable in the absence of the feedback, can 
be stabilized. Schell et al. (1984) confirm this prediction experimentally, observing a 
significant segment of this previously unstable branch. 

The phenomenon seen herk of a state that is unstable without delay becoming stable 
for short delays is characteristic of the situation shown in figure 3 (b), where the ratio 
curve crosses the unit circle twice. The second part of the scenario is that at longer 
delays, the state again becomes unstable, and this is indeed what happens. In addition 
to the middle state becomining unstable at longer delays, the upper and lower states 
also become unstable, and the system becomes oscillatory. This behaviour is found 
both in the model calculations and in the experiments of Zimmerman, Schell and Ross 
(1 984). 

In a more detailed theoretical analysis of time delay in rate processes, Schell and 
Ross (1986) utilize similar models of illuminated thermochemical reactions with 
delayed feedback to reach a number of interesting conclusions. They observe that such 
systems, although they possess an infinite number of degrees of freedom as noted above, 
tend to be strongly contracting, so that they have attractors of relatively low 
dimension-steady states, periodic orbits, or low-dimensional chaos. The pheno- 
menon of stabilizing an unstable state at  short delays is found to be quite general. At 
longer delays, they observe not only periodic oscillation, but also chaos and 
hyperchaos (aperiodic behaviour with more than one unstable direction in phase 
space). These more exotic modes of behaviour result when a delayed feedback is applied 
to a system which can oscillate periodically in the absence of feedback. They are 
attributed to memory effects caused by the delay, which repeatedly reinject the system 
at different points in the neighbourhood of a saddle focus. 

3.5. A simpler example: the cross-shaped phase diagram 
Much of the recent progress in designing chemical oscillators (Epstein et al. 1983) 

has resulted from an algorithm based on a simple two-variable ODE model due to 
Boissonade and De Kepper (BD) (1980). The primary variable x evolves according to a 
cubic rate law, leading to bistability and hysteresis. The feedback variable y, for a 
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Delay efects in chemical kinetics 151 

sufficiently long relaxation time 7; provides a delayed feedback that causes the system 
to become oscillatory. The equations of the model are 

dx 
dt 
-= -(x3 -px + A) - ky, ( 3 . 1 3 ~ )  

(3.13 b) 

If T > 1 /p, the phase diagram of the system in the k-l plane shows a characteristic cross 
shape (dashed lines in figure 6 (a)), in which two triangular regions each possessing a 
single stable steady state are separated by regions of bistability and oscillation, all of 
which meet at the cross point P. If T < l/p, only the monostable and bistable regions are 
present, and no oscillation can occur. 

The role of the variable y in equations (3.13) is to generate a delayed feedback that 
pulls the system toward the line x=y.  Epstein and Luo suggested that the single DDE 
(3.14) resulting from eliminating equation (3.13 b) and replacing y(t) in equation (3.13 a) 
by x(t - z) should display similar dynamics 

- [ ~ ( t ) ~  - px(t) + l] - kx(t - z). (3.14) 

They performed a linear stability analysis of equation (3.14) using equation (2.19) to 
generate the secular equation 

- 3x: + p - k exp (- o z )  - o = 0. (3.15) 

Application of the stability conditions in equations (2.23) leads to three equations for 
the stability of the steady-states x,. Two of these 

(3.16) 

3 ~ :  - p  + k > 0, (3.17) 

are identical to the conditions for the stability of the steady-states of the standard BD 
model if we replace the feedback time T in equation (3.13b) by the delay time z in 
equation (3.14). The third condition 

1 
3x:-p+->O, 

z 

[ ( 3 ~ :  - p)2  + ($r)”i’ - k > 0, 

where O<a, <x and 

(3.18) 

a, = ( - 3x: + p)z tan a,, (3.19) 

is new and makes possible additional regions of instability of the steady-states of 
equation (3.14). Typical results are summarized in the phase diagrams of figure 6. 
Figure 6 (a) illustrates the situation for the case of the usual cross-shaped phase diagram 
where z > l/p; the behaviour is qualitatively the same. We have regions of monosta- 
bility, bistability and oscillation. Now, however, the additional condition (3.1 8) has 
caused regions of the parameter space that gave stable steady-states in the BD model to 
become unstable. The oscillatory parameter range is increased, and the cross point has 
shifted from P to P .  
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Figure 6. Phase diagrams in the k- l  plane obtained from linear stability analysis of the delayed 
BD model (Epstein and Luo 1991). (a) ,u = 3, z = 1. Dotted line separates regions in which 
there are one or three steady states. Dashed lines are stability boundaries given by 
equations (3.16 and 3.17), equivalent to ordinary BD model, equations (3.13) with T =  1. 
Solid lines are stability boundary for full DDE model using conditions (3.18) as well. 
(b) p = 3, z = 0.3. Only bistable region is found in ordinary BD model. Oscillatory region 
results from stability condition (3.18). 
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Delay effects in chemical kinetics 153 

A more dramatic effect is seen in figure 6(b), where we examine the case z< l / p .  
Here, the BD model yields only a single wedge-shaped region of bistability surrounded 
by a much larger region of monostability. In addition to these features, the DDE model 
possesses a region of oscillatory behaviour at large k and small 111. Recent experiments 
in our laboratory on the iodate-arsenous acid reaction (Weiner and Epstein, 
1991, unpublished) confirm that by adding a delayed feedback to a bistable system that 
is incapable of autonomous oscillation, one can generate chemical oscillation. 

3.6. The Oregonator 
By far the most widely investigated model in nonlinear chemical dynamics is the 

Oregonator (Field and Noyes 1974), a set of five pseudoelementary steps that result in 
three ODES, which give an excellent qualitative description of much of the dynamics of 
the classic Belousov-Zhabotinskii chemical oscillator. The model equations are 

A + Y+X, (3.20 a)  

x+ Y+P, (3.20 b) 

B+X+2X +z, (3.20 c)  

2X+Q, (3.20d) 

Z+f I: (3.20 e) 

where f is a stoichiometric factor that specifies how many bromide ions are generated 
for each ceric ion consumed in the reaction, A = B = BrO, are assumed to be constant, 
P =  HOBr and Q = BrO, + HOBr are inert products, and the variable concentrations 
are X=HBrO,, Y=Br- and Z=Ce(IV). Chemically, the role of cerium (2) is to 
provide a means of regenerating bromide ion (Y), whose level controls the periodic 
switching of the reaction between autocatalytic and non-autocatalytic pathways for the 
consumption of bromous acid (X). In dynamical terms, as we shall see, it is also 
essential that this feedback generate a delay. 

It would seem that there might be conditions under which one could simplify the 
model (3.20) by combining equations (3.20~) and (3.20e) into a single step (3.21), 
thereby eliminating 2 and reducing the model to two variables X and Y 

B + x + 2 x  +fY. (3.21) 

Field and Noyes (1974) attempted such a reduction, but found that it was impossible to 
obtain oscillatory behaviour in any such reduced model. Epstein and Luo (1991) 
reasoned that it might be possible to combine the two steps and maintain oscillatory 
behaviour if one also incorporated the effects of delay. They examined two ‘delayed 
Oregonator’ models consisting of equations (3.20 a, b, d )  and (3.21). In the first, the rate 
of step (3.20 a)  was taken to be k,A Y(t -z), while all other rates were determined by the 
Law of Mass Action. In the second model, step (3.20 a) had mass action kinetics, but 
step (3.20b) was given a rate kbX(t)Y(t--) .  Thus the first DDE model examines the 
effect of delay in the bromide feedback on the reaction of bromide with bromate, while 
the second looks at delay effects on the bromide-bromous acid reaction. 

The results obtained were unequivocal. By a combination of linear stability analysis 
and numerical simulation, we were able to demonstrate that the first model cannot give 
oscillatory solutions for any values of the rate constants and initial concentrations, 
while the second model, with an appropriate choice of z, yields oscillations very similar 
to those found in the three-variable ODE Oregonator model as shown in figure 7. The 
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(4 
Figure 7. Oscillatory behaviour in (a)  the ordinary Oregonator DDE model of the BZ reaction, 

and (b) the delayed Oregonator (Epstein and Luo 1991) with z = 2 s as described in the text. 

calculation thus shows not only that delay is essential in this system but reveals just 
where in the mechanism that delay plays its role. 

3.7. Bubble growth and gas evolution oscillators 
Smith and Noyes (1983) have developed a model for the oscillatory evolution of 

carbon monoxide gas in the Morgan reaction, the dehydration of formic acid by 
concentrated sulphuric acid. A key element in that model is a consideration of the 
process by which CO nucleates and forms bubbles. This process is described by a series 
of rate equations that describe the concentrations of bubbles of different sizes. While 
the results obtained are encouraging, it was necessary to treat at least 20 different 
classes of bubbles, and the authors suggest that a more elegant approximate 
formulation with fewer variables would be desirable. They propose a DDE description 
in which the change of concentration of dissolved gas C(t) is given by 

dC0 = @(t) - LFJ"(t - z), 
dt 

(3.22) 

where L is the number of moles of gas per bubble that escapes the solution, F is the 
fraction of nuclei that ultimately grow and escape 

@(t)=k,[HCOOH],exp(-k,t), 
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Delay effects in chemical kinetics 155 

is the rate of formic acid dehydration, and J ,  is the rate of formation of nuclei. No 
explicit simulations were carried out with this DDE formulation, but it may be worth 
pursuing further. 

3.8. The minimal bromate oscillator 
The Belousov-Zhabotinskii reaction (Belousov 1958, Zhabotinskii 1964), the metal 

ion catalysed reduction of bromate ion by an organic substrate such as malonic acid, is 
without doubt the most thoroughly studied of the chemical oscillators. The Field- 
Koros-Noyes (1973) mechanism, proposed nearly two decades ago, has withstood a 
number of challenges and modifications, and still appears to give an accurate 
description of the key dynamical aspects of that system. Despite recent progress 
(Gyorgyi, Turanyi and Field 1990), the fate of the organic substrate, condensed into the 
single stoichiometric factor f i n  equation (3.20 e) of the Oregonator model, remains the 
weakest link in our understanding of the BZ reaction. A modified version of the BZ 
reaction, in which the organic species is replaced by a flow of bromide ion into a stirred 
tank reactor (CSTR) has come to be known as the minimal bromate oscillator (MBO) 
(Orban, De Kepper and Epstein 1982). This system, consisting of Mn(II), BrO; and 
Br- flowed into a CSTR, exhibits the classic cross-shaped phase diagram discussed in 
Section 3.5, with two regions of monostability, one of bistability and a narrow 
oscillatory region. Its mechanism (Noyes, Field and Thompson 1971) is probably the 
best understood of any of the chemical oscillators. 

Weiner, Schneider and Bar-Eli (1989) carried out experiments on the MBO in the 
oscillatory parameter regime with the addition of a delayed feedback introduced by 
varying the CSTR flow rate at time t as a function of the state of the system at an earlier 
time t-z .  They found that the period of the oscillation increased and decreased in a 
‘sawtooth’ fashion as the delay z was introduced. 

In a related, but far more detailed study, Chevalier, Freund and Ross (1991) have 
examined the MBO for parameters that lead to bistability (Geiseler and Bar-Eli 1981) 
in the absence of delayed feedback. The feedback is introduced by having fixed flows of 
MnSO, and NaBrO, and a variable flow of NaBr with a flow rate given by 

fBr-(t)=K{l +~sin(ox(t-z)+4)}, (3.23) 

where x is the voltage of the bromide-sensitive electrode, K is the mean flow rate, E sets 
the amplitude of the nonlinear feedback, o is a frequency in concentration space, and @ 
is the phase of the feedback. In these experiments, the flow rate was updated according 
to equation (3.23) every 0.22 s (the sampling time). 

The variety of dynamical behaviour observed in this apparently simple system is 
truly remarkable. As z is increased, there are Hopf bifurcations to simple periodic 
behaviour, then period doubling sequences to chaos as well as several types of 
multistability. One of the most interesting observations, shown in figure 8, is crisis 
(Grebogi, Ott and Yorke 1982), the sudden expansion of the size of a chaotic attractor 
as a parameter (in this case z) is varied. This is believed to be the first experimental 
observation of crisis in a chemical system. 

Chevalier et al. calculate the correlation dimension (Grassberger and Procaccia 
1983) and compare the results with a conjecture (Le Berre, Ressayre, Tallet, Gibbs, 
Kaplan and Rose 1987) that in chaotic systems with delayed feedback the dimension of 
the chaotic attractor should be given by z/6,, where 6, is the correlation time of the 
delayed feedback. A quantitative comparison with the experimental results shows that 
in this system z/d, gives an overestimate of the correlation dimension. 
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156 I .  R .  Epstein 

Simulations of the MBO system with the delayed feedback of equation (3.23) taken 
into account give excellent qualitative agreement with the bifurcation sequences 
observed in the experiments. 

3.9. A model for optical bistability-DDEs and maps 
The single DDE (Ikeda, Daido and Akimoto 1980) 

= -X(t)+a-bsin[X(t- 111, 1 dX(t) 
G dt 
-~ (3.24) 

has been used in a number of model studies of optically bistable systems. The control 
parameters a and b depend upon the input voltage, while X represents the output 
voltage. A simple rescaling (t+t/G) shows that G is the delay time. 

Although the behaviour of equation (3.24) is itself of considerable interest, I use it 
here only to point out a considerable simplification that arises in the limit of very long 
delay times G-r co. In that limit, the behaviour of the DDE (3.24) reduces to that of the 
one-dimensional map (3.25) 

(3.25) 

This particular map possesses an extremely rich bifurcation structure, largely because it 
is a two-parameter, multiple-extremum map, in contrast to the one-parameter, single- 
extremum maps that are normally studied (Nardone, Mandel and Kapral 1986). The 
array of analytical techniques that can be brought to bear on the map (3.25) is 
considerably more powerful than those available for the DDE (3.24). Detailed 
numerical calculations suggest that the map solutions indeed give an excellent 
description of the DDE bifurcation structure for large G. Whether this approach is 
likely to prove useful for other chemical models for realistic values of the delay time (i.e., 
when is the delay large?) is a question that seems well worth exploring. 

X, = a- b sin X , _  

3.10. Biological models 
The number of DDE models of chemical interest is but a small fraction of the 

number of biologically significant delay models that have been investigated. 
MacDonalds (1989) book and Murray’s (1989) book provide excellent surveys of this 
work. Here I look briefly at  two examples. 

Buchholtz and Schneider (1987) have developed a mechanism to describe the 
transcriptional and translational processes involved in DNA replication during the 
infection of T3 and T7 bacteriophages. They find that even at 17-step mechanism is 
inadequate to model the abrupt rise of certain proteins and DNA species, and they 
conclude that the experimentally observed kinetics is best described by the explicit 
introduction of lag times. They attribute these delay times to transport processes 
involving linear diffusion of proteins along macromolecules and they discuss how to 
estimate the translational and transcriptional delays from experimental data. 

The authors conclude that ‘the replacement of a time lag by a linear chain of 
ordinary reaction steps will also produce a steep rise in products where, however, the 
actual number of reaction steps and their individual rate constants are unknown. 
Furthermore, multiple reaction steps would make it difficult to achieve a direct 
correlation between product rise times and the location of the genes’. Thus, as in the 
treatment of Section 3.2, introduction of delays allows one to eliminate intermediate 
steps and species. Here one gains the additional advantage that the delay times may be 
correlated with physical data about the position of genes. 
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Figure 8. Experimental phase portraits showing crisis (Chevalier et al. 1991). Axes represent 
potential of bromide-sensitive electrode at times t and t + 32.9 s. z = (a) 54.925 s, (b) 10985 s. 
Filled circles represent initially (z = 0) stable fixed points; empty squares are initially 
unstable fixed points. As z is increased, lower attractor collides with unstable fixed point 
and undergoes sizeable expansion (crisis). 
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Glass and Mackey (1979) have defined a class of dynamical diseases, pathological 
conditions caused by abnormal temporal organization. One of the best characterized of 
these conditions is Cheyne-Stokes respiration, a human respiratory ailment in which 
the ventilation or volume of air taken in regularly increases and decreases, with the 
periods of low ventilation corresponding to dangerously low or apneic levels. Mackey 
and Glass (1 977) have constructed a delay model for Cheyne-Stokes respiration, which 
is based on the known physiological features of the respiratory apparatus and which 
gives excellent agreement with the available clinical data. 

Ventilation is controlled by the level of arterial CO,, c(t). Carbon dioxide is 
produced at a relatively constant rate by metabolic processes in the body. Since the 
CO, receptors are located in the brain stem and the 'message' about how much air to 
take in must reach the lungs, there is an inherent time delay z between any change in c 
and its effect on the ventilation K Finally, the ventilation saturates with c; to describe 
this effect, a Hill function is used to describe the dependence of the ventilation V on c. 
Incorporating all of these features results in the following equations for the dynamics of 
the CO, level in the blood: 

c"( t - z) 

a" + c y t  -7) ' v(t)  = Vmax 

dc(t) - cm(t - z) 
--~-bb(t)c(t)=p- bVmaXc(t) 

d t  a"+ crn(t - z) ' 

(3.26 a) 

(3.26 b) 

where V,,,, the maximum possible ventilation, the Hill parameters a and m and the 
CO, removal coefficient b can all be determined from experimental data. Equation 
(3.26) possesses a unique positive steady-state. Linear stability analysis reveals that this 
state is stable when 

(3.27) 

where c, is the steady-state value of c in equation (3.26 b). Equation (3.27) implies that 
the (healthy) steady-state will become unstable and give way to (pathological) 
oscillations in ventilation if either the delay time becomes too long or if the dependence 
of V on c, equation (3.26a), becomes too steep at the steady-state. 

4. Future directions 
The use of delay models and differential delay equations in chemical kinetics is a 

subject still in its infancy. While it is always difficult to predict what directions a new 
area is likely to grow in and how significant those directions may prove to be, it seems 
worthwhile to close this review by suggesting some aspects of the subject that merit 
further development. 

On the mathematical and computational side, there is a considerable body of 
theory for dealing with a single differential delay equation. Both the analytical 
approach to be found in Bellman and Cooke (1963) and the geometrical approach of 
MacDonald (1989) offer powerful methods for investigating the stability and dynam- 
ical behaviour of individual DDEs. Numerical methods for single DDEs are also 
relatively easily adapted from the corresponding ODE methods. The situation for sets 
of coupled ODES is less well developed, and as interest grows in models that require 
their solution, it seems likely that improved methods will be developed for dealing with 
such systems. Mathematically, the geometrical approach appears to offer somewhat 
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more promise, at  least for systems of moderate size. It may prove more productive, 
especially in treating larger systems, for numerical analysts to design methods 
specifically aimed at DDEs rather than to adapt older techniques for treating DDEs. 

The notion, presented first in our treatment of sequential first order reactions in 
Section 3.2 and then in Section 3.8 on the BZ reaction, of using delays both to analyse 
and to simplify complex reactions with many intermediates, is an attractive one. 
Chevalier et al. (1991) suggest that the imposition of a delayed feedback can be used to 
determine the elements of the steady-state Jacobian and thus to differentiate among 
competing mechanisms. Epstein and Luo (1991) take a step in the latter direction by 
showing at which stage of the BZ reaction the delay in the feedback becomes essential 
for oscillation. The most difficult part of reducing complex systems by the introduction 
of delays is to understand how the delay is related to the kinetic parameters (rate 
constants, concentrations, etc.) of the intermediates being ‘hidden’ in the delay. The 
problem is exactly soluble (as many other problems are) for a linear system; one obtains 
an expression like equation (3.7). For the more interesting nonlinear case, one needs a 
different approach. Results on the BZ reaction (Epstein and Luo 1991) suggest that the 
time between the concentration maxima of the intermediate being eliminated and of the 
species being delayed may be a useful estimate of z. However, this quantity may not be 
experimentally accessible. What is needed is an experimental approach to assessing the 
number and magnitude of the time lags in a system. 

Experimentally, delayed feedback is a potentially powerful tool for the analysis of 
dynamical systems. It can be used either to stabilize otherwise unstable steady states 
(Zimmerman et al. 1984) or to cause a steady-state to become unstable, leading to 
periodic or chaotic behaviour. Presumably, delayed feedback can also be used to 
stabilize unstable periodic orbits, though this question has not apparently been 
addressed either experimentally or theoretically. In view of recent interest in using 
(instantaneous) feedback to make chaotic systems behave periodically (Ott, Grebogi 
and Yorke 1990), this may be a problem worth exploring further. 

Delay systems offer the possibility of creating, with the help of microcomputers, 
relatively simple, easily controlled ‘chemical circuit elements’ for studying dynamical 
systems. One can sample some variable like a concentration or an absorbance at time t 
and use that reading to affect the system parameters at t + z.t The delay time z provides 
an easily controlled bifurcation parameter that can have profound effects on the 
dynamics of the system. In my own laboratory, we have recently constructed a simple 
oscillator from a photochromic reaction and a variable intensity light source by 
making the light intensity depend upon the composition of the solution at  t - z (Kagan, 
Saigh and Epstein, 1991, unpublished). By combining several of these units, it should be 
possible to construct systems capable of considerable dynamic complexity. The 
analogy to neural systems, in which impulses must travel from sensory neurons to a 
central processor and then back to motor neurons with a concomitant .transmission 
delay, is one that may be worh pursuing. 

Whatever the path of future development, it seems clear that chemists interested in 
the dynamical behaviour of complex systems should be aware of the possibilities 
inherent in models that incorporate delay and of the availability of techniques for 
treating such models. 

?This is often done unintentionally, but in most (though not all) experiments z is small 
enough that its effects may safely be ignored. 
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